
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53176 723

A Novel Approach to Semantic Search for

Accurate Source Code

Divya Kumari Tankala
1
, Vikas Boddu

2

Asst. Professor, CSE Department, Vignan Institute of Technology and Science, Hyderabad
1

Asst. Professor, CSE Department, GITAM University, Andhra Pradesh
2

Abstract: Reusability is one of the assets of software. The software engineering helps for reusability. It helps in

reducing the cost and time in development of software which are one of main influencing factors in software

development life cycle. It increases the productivity and results by the programmer. Even it good still scale and

approximate matches then complex specification is an open issue. We propose a novel approach to semantic search that

addresses some of these limitations and is designed for queries that can be described using an example. In this

approach, programmers write lightweight specifications as inputs and expected output examples for the behavior of

desired code. Using these specifications, an SMT solver identifies source code from a repository that matches the

specifications. This research contributes the first work toward using SMT solvers to search for existing source code. In

this, we motivate the study of code search and the utility of a more semantic approach to code search. We introduce and

illustrate the generality of our approach using subsets of three languages, Java, Yahoo! Pipes, and SQL. Our approach

is implemented in a tool, Satsy, for Yahoo! Pipes and Java. Finally, we show that this approach is adaptable to finding

approximate matches when exact matches do not exist, and that programmers are capable of composing input/output

queries with reasonable speed and accuracy. These results are promising and lead to several open research questions

that we are only beginning to explore.

Keywords: Novel Approach, Semantic Search, SMT Solver, SNIFF, Java, Yahoo! Pipes, and SQL.

1. INTORUDCITON

Now a days programmers face many challenges when try

to find source code or snippets to reuse in current software

development task [2].

The fundamental problem of discovering relevant code is

the mismatch between the high level intention related to

the descriptions of software and low level implementation

details of software project.

The above problem is described as the concept assignment

problem [3]. Source code search engines are developed to

retrieve relevant source code by matching keywords in

queries to words in the descriptions of applications,

comments in their source code, and the names of program

variables and types. Source code search engines dig into

software repositories to find relevant source code which

contain thousands of software projects.

But many source code repositories are polluted with

poorly functioning projects [4], by simply using a match

between keywords from the query of user with the

description of software project in the repository and it does

not guarantee that the retrieved project or source code is

relevant to the query of user. Today many source code

search engines return only snippets or piece of code that

are relevant to user queries. For programmers this create

confusion [5] how to reuse these code snippets or piece of

code. But the problem of reuse is the code fragments

retrieved look very similar [6]. If search engines retrieve

code snippets in the circumstances of executable

applications; it makes easy for programmers to understand

how to reuse these code fragments.

2. LITERATURE SURVEY

Manber presented approximate index concept to measure

similarity between strings in different documents (Manber

1994 [6]). A tool called “Sif” is developed to find similar

files in a large file system. He proposed the concept of

approximate index to measure the similarity of character

strings between documents, which was adopted later by

many similar systems.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53176 724

Some papers tried to tackle the performance problem of

finding plagiarism in documents through using indexing

(Mozgovoy et al., 2005 [7]). Such concept is utilized also

in search engines for fast document retrieval.Several

papers tried to compare between different source code

analyses tools (e.g., Jun-Peng et al 2003 [10], Maurer et

al., 2006 [11], Kustanto and Liem 2009 [12], Hage et al.,

2010 [13], etc.).

SNIFF is another idea for searching which uses API calls

for retrieving source code [7],[13] and mainly used for

searching java using free form quires and it also check

interaction between these retrieved code snippets [8] .

Many code mining techniques and tools are proposed and

developed in order to retrieve more accurate relevant

software component belong to software application for

reuse form different repositories as it shown in Table 1.

Code finder try to locate similar code by using terms in

source code. But this search engine uses API

documentation for locating source code based on

keywords from users. This search won't retrieve source

code by comparing keywords in source code itself. Today

many source code search engines uses code broker system

for retrieving the source code by using comments done on

program by programmer to find relevant artifact’s [12].

But in this search engine the code broker system depend

upon the documentation, meaningful names of program

variables and its types and this leads to retrieve more

precise results.

3. RELATED WORK

Software reuse or source code reusability is one of main

aspect of software engineering which helps in reuse of

software component or code snippets which are already

developed and well tested. It helps in reducing the cost and

time in development of software which are one of main

influencing factors in software development life cycle. In

order to reduce the mismatch in between the high level

intention associated with software development,

Programmers frequently search for source code to reuse

using keyword searches.

When effective and efficient, a code search can boost

programmer productivity; however, the search

effectiveness depends on the programmer's ability to

specify a query that captures how the desired code may

have been implemented. Further, the results often include

many irrelevant matches that must be filtered manually.

More semantic search approaches could address these

limitations, yet existing approaches either do not scale, are

not flexible enough to find approximate matches, or

require complex specifications. We propose a novel

approach to semantic search that addresses some of these

limitations and is designed for queries that can be

described using an example. In this approach,

programmers write lightweight specifications as inputs

and expected output examples for the behavior of desired

code.

Using these specifications, an SMT solver identifies

source code from a repository that matches the

specifications. The repository is composed of program

snippets encoded as constraints that approximate the

semantics of the code. This research contributes the first

work toward using SMT solvers to search for existing

source code. In this, we motivate the study of code search

and the utility of a more semantic approach to code search.

We introduce and illustrate the generality of our approach

using subsets of three languages, Java, Yahoo! Pipes, and

SQL. Our approach is implemented in a tool, Satsy, for

Yahoo! Pipes and Java. The evaluation covers various

aspects of the approach, and the results indicate that this

approach is effective at finding relevant code. Even with a

small repository, our search is competitive with state-of-

the-practice syntactic searches when searching for Java

code. Further, this approach is flexible and can be used on

its own, or in conjunction with a syntactic search.

SEMANTIC SEARCH

Information retrieval by searching information on the web

is not a fresh idea but has different challenges when it is

compared to general information retrieval. Different

search engines return different search results due to the

variation in indexing and search process. Google, Yahoo,

and Bing have been out there which handles the queries

after processing the keywords. They only search

information given on the web page, recently, some

research group’s start delivering results from their

semantics based search engines, and however most of

them are in their initial stages. Till none of the search

engines come to close indexing the entire web content,

much less the entire Internet. Current web is the biggest

global database that lacks the existence of a semantic

structure and hence it makes difficult for the machine to

understand the information provided by the user.

Fig.2. Semantic Search

When the information was distributed in web, we have

two kinds of research problems in search engine i.e. How

can a search engine map a query to documents where

information is available but does not retrieve in intelligent

and meaning full information? The query results produced

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53176 725

by search engines are distributed across different

documents that may be connected with hyperlink. How

search engine can recognize efficiently such a distributed

results?

Semantic web [4] [5], can solve the first problem in web

with semantic annotations to produce intelligent and

meaningful information by using query interface

mechanism and ontology’s. Other one can be solved by

the graph-based query models [6]. The Semantic web

would require solving extraordinarily difficult problems in

the areas of knowledge representation, natural language

understanding. The following figure depicts the semantic

web frame work it also referred as the semantic web

layercake by W3C.

Current Web & Limitations

Present World Wide Web is the longest global database

that lacks the existence of a semantic structure and hence

it becomes difficult for the machine to understand the

information provided by the user in the form of search

strings. As for results, the search engines return the

ambiguous or partially ambiguous result data set;

Semantic web is being to be developed to overcome the

following problems for current web.

• The web content lacks a proper structure regarding the

representation of information.

• Ambiguity of information resulting from poor

interconnection of information.

• Automatic information transfer is lacking.

• Usability to deal with enormous number of users and

content ensuring trust at all levels.

• Incapability of machines to understand the provided

information due to lack of a universal format.

Finally, we show that this approach is adaptable to finding

approximate matches when exact matches do not exist,

and that programmers are capable of composing

input/output queries with reasonable speed and accuracy.

These results are promising and lead to several open

research questions that we are only beginning to explore.

4. PROPOSED WORK

The proposed system implements an important component

semantic query evaluation. User provides query in terms

of semantic description and the query evaluator does

semantic query execution to provide the matching results.

We propose a novel approach to semantic code search that

addresses several of these limitations and is designed for

queries that can be described using an input/output

example. In this approach, programmers write lightweight

specifications as inputs and expected output examples.

Unlike existing approaches to semantic search, we use an

SMT solver to identify programs or program fragments in

a repository, which have been automatically transformed

into constraints using symbolic analysis, that match the

programmer provided specification.

We instantiated and evaluated this approach in subsets of

three languages, the Java String library, Yahoo! Pipes

mashup language, and SQL select statements, exploring its

generality, utility, and tradeoffs. The results indicate that

this approach is effective at finding relevant code, can be

used on its own or to alter results from keyword searches

to increase search precision, and is adaptable to find

approximate matches and then guide modifications to

match the user specifications when exact matches do not

already exist. These gains in precision and existibility

come at the cost of performance, for which underlying

factors and mitigation strategies are identified.

Fig.3.Search Process

5. EXPERIMENTAL WORK

We have motivated, defined, instantiated and evaluated a

new approach to source code search that uses input/output

examples as specifications and an SMT solver to identify

search results. In this section, we discuss the related work.

Our approach is related to recent work in code search,

code reuse, verification and validation, and program

synthesis.

Code Search

The ability to search for source code on the Internet has

proven to be essential for many common software

development and maintenance tasks. However, available

code search engines are typically limited to lexical

searches and do not take in consideration the underlying

semantics of source code such as the program structure or

language. Especially object-oriented source code, which

includes inheritance and polymorphism, is often not

modeled to a level in which it can be queried sufficiently.

In this paper, we present a Semantic Web-based approach

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53176 726

to source code search that uses ontologies to model and

connect source code fragments extracted from repositories

on the Internet. This modeling approach allows us to

reason and search across project boundaries while dealing

with incomplete knowledge and ambiguities. In

comparison with other search tools, we incrementally

build our knowledge base without the need to re-visit

fragments or compile the source code. Our search engine

is scalable and allows us to process and query a large code

base collected from open source projects.

Different definitions exist as what constitutes a large scale

source code search. In [7] the term Internet-scale Code

Search was introduced and defined as the process of

searching over a large number of open source projects and

other complementary information resources such as, web

pages and wiki pages that include source code. In [10] the

term Next-Generation Code Search was presented to

describe a source code search that considers structural

code information and provides services to support other

software engineering activities. In the context of our

research we combine and extend the functionalities

covered by these existing source code search definitions

by three major factors: (1) The ability to search over a

large amount of source code such as found on the Internet,

(2) fine-grained structural search capabilities and dynamic

code analysis and (3) the support for incomplete source

code fragments. Code fragments, in this work, are defined

as physically separated pieces of code (e.g. a class file or a

few lines of code within a web page) which are

syntactically correct and have a logical dependency to

other code fragments. In this paper, we are interested in

improving both the completeness and precision of search

results compared to existing source code engines available

on the Web. It has to be pointed out, that dealing with

source code fragments is inherently more difficult than

source code search within a project that can be build (has

all source code available e.g., within Eclipse).

Dependencies among code fragments (e.g. library

dependency represented by import statements in Java)

need to be resolved without holding any assumption about

the order and the availability of other fragments and

without compromising the scalability of the engine. This is

one of the main challenges of source code search on the

Internet and a motivating start point for our research. In

what follows we will discuss the type of source code

search scenarios that should be supported.

We have described an approach to code search that is

semantic and uses input/output examples to define the

queries, which is closely related to research in code search.

Recent studies have revealed that programmers frequently

use general search engines to find code for reuse [Sim et

al. 2011], and our own study contains these findings

[Stolee and Elbaum 2012a]. More specialized syntactic

code search engines in the state-of-the-practice (e.g.,

Koders, Krugle) also incorporate filtering capabilities

(e.g., language, libraries) and program syntax into the

query to guide the matching process, such as type

signatures of desired code [Sim et al. 2011]. These

approaches search at an internet-scale, whereas our search

approach operates over repositories. Other approaches in

the state-of-the-art add natural language processing to

increase the potential matches [Grechanik et al.

2010][McMillan et al.2011]. Our work is di_erent in that

the search is semantic, but as we show (Section 5.2.3),

both approaches are complementary and can be combined.

Early work in semantic code search required developers to

write complex specifications using first-order logic or

specialized languages (e.g., [Ghezzi and Mocci

2010][Penix and Alexander 1999][Zaremski and Wing

1997]), which can be expensive to develop and error-

prone. The cost of writing specifications can be reduced

by using incomplete behavioral specifications, such as

those provided by test cases (a form of input/output)

[Lazzarini Lemoset al. 2007][Podgurski and Pierce

1993][Reiss 2009], but these approaches require that the

code be executed to _nd matches. Some approaches also

require a keyword query to first prune the search space,

which could miss some solutions [Reiss 2009]. Further,

executing test cases only returns exact matches, missing

many relevant matches that may have a slightly different

signature (e.g., extra parameter). Other search approaches

use sequences of API calls [Mishne et al. 2012] or

sequences of textual statements [Chan et al. 2012] as

queries to find code that performs the specified actions in

a specified order, but implementation details are required

for an effective search.

Code Reuse

In the code reuse process, there are two primary activities:

finding and integrating. Our approach focuses on finding,

which is what we have evaluated, but it has potential to be

useful with integration. For effective reuse, scope and

dependencies must be understood for developers to

effectively integrate code [Garlan et al. 1995]. Some

recent work assists programmers with integrating new

code by matching it to structural properties in their

development environment (e.g.,method signature, return

types) [Cottrell et al. 2008][Holmes et al. 2006]. Real-time

clone detection can promote reuse by identifying code

clones as they are developed, but again this depends on a

developer having a sense of how to implement code [Lee

et al. 2010]. Further, while these approaches guarantee

structural matching, the behavior of the integrated code

may not be well understood.

Verification and Validation

In this work, we have talked about how symbolic analysis

is used to generate constraints that represent the program

behavior, and that this representation is used in the search

process. Symbolic execution [Clarke 1976][Clarke and

Richardson 1985][King 1976] is a technique that executes

code with symbolic, rather than concrete, values, and can

generate such symbolic summaries of source code. These

are similar to the summaries that our implementation

generates to represent code behavior. For two of our

languages presented in this work, SQL and Yahoo! Pipes,

symbolic execution tools are not readily available. For

Java, however, tools like the symbolic execution extension

[Khurshid et al. 2003][JPF-symbc 2012] to the Java

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53176 727

Table.1. Java Artifacts Specifications

PathFinder model checker [Visser et al. 2003] can

generate symbolic summaries that we can use, but are

limited in the data types that are supported. At this point,

part of our ongoing work is to integrate our encoding

process with such tools, taking advantage of their

capabilities to generate summaries for certain complex

code structures. In validation, constraint and SMT solvers

have been used extensively for test case generation.

Toward the goal of database generation for testing, reverse

query processing takes a query and a result table as inputs

and using a constraint solver, produces a database instance

that could have produced the result [Binnig et al. 2007].

Other work in test case generation for SQL queries has

used SMT solvers to generate tables based on queries

[Veanes et al. 2010].

6. CONCLUSION

In this paper, a novel Semantic-Web enabled source code

search is introduced. Our approach does not only scale in

regards to the large amount of source code available on the

Internet but is also optimized to work with web crawlers to

incrementally build a semantic knowledge base. Our

approach is scalable as we support one-pass parsing and

do not make assumptions on the order of fragments

analyzed. This makes our Semantic Web based approach

unique among other currently adopted approaches for

Internet scale source code search research. We have

pointed out various usage scenarios of source code search

in which traditional search engines fail to provide

(complete) results and show how we out-perform them by

incorporating source code semantics into the knowledge

base. We have discussed our ontology design in regards to

its strengths and weaknesses and pointed out common

pitfalls in designing source code ontologies in general, and

our highly optimized ontology for source code search in

particular. Furthermore, we have analyzed various source

code meta modeling approaches under the aspect of source

code search to make our approach scalable i.e. the

potential and tradeoffs of our search approach over the

state-of-the-practice and the state-of-the-art, describe how

to encode search queries and programs in three languages,

the Java string library, Yahoo! Pipes, and SQL select

statements, and explore the effectiveness of our approach

in each of these domains. Generality and efficiency in the

context of richer programs, such as those contains loops

and other complex constructs, are concerns that still need

to be addressed.

As part of our future work, we plan to add the versioning

information extracted from metadata to the repository and

deal with contradictory information (e.g. through levels of

trust). In addition, more detailed source code query

capabilities will be added to our Eclipse plug-in. We also

plan to make our tool available to the community in form

of an open source code search engine and are currently

working on the web interface for this project. This is just

one step toward our ultimate goal of leveraging existing

resources, such as source code repositories, to positively

impact programmer productivity.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53176 728

REFERENCES

1. Erdos, K., Sneed, H.M.: Partial comprehension of complex

programs (enough to perform maintenance). In: 6th International
Workshop on Program Comprehension (1998)

2. Welty, C.: Augmenting abstract syntax trees for program

understanding. In: 12th IEEE International Conference Automated
Software Engineering (1997)

3. Bajracharya, S., Ngo, T., Linstead, E., Dou, Y., Rigor, P., Baldi, P.,

Lopes, C.: Sourcerer: a search engine for open source code
supporting structure-based search. In: 21h ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages,

and Applications (2006)
4. Hoffmann, R., Fogarty, J.: Assieme: finding and leveraging implicit

references in a web search interface for programmers. In: 20th

annual ACM Symposium on User Interface Software and
Technology (2007)

5. Holmes, R., Murphy, G.C.: Using structural context to recommend

source code examples. In: 5th International Conference on Software
Engineering (2005)

6. Grove, D., DeFouw, G., Dean, J., Chambers, C.: Call graph

construction in object-oriented languages. In: 12th ACM SIGPLAN
conference on Object-oriented programming, systems, languages,

and applications (1997)

7. Gallardo-Valencia, R.E., Sim S.E.: Internet-scale code search. In:
1st ICSE Workshop on Search-Driven Development-Users,

Infrastructure, Tools and Evaluation (2009)

8. Auer, S., Lehmann, J.: What have Innsbruck and Leipzig in
common? Extracting Semantics from Wiki Content. In: European

Semantic Web Conference (2007)

9. Rilling, J., Witte, R., Schuegerl, P., Charland, P.: Beyond
Information Silos - an Omnipresent Approach To Software

Evolution. J. Semantic Computing. 2, 431--468 (2008)

10. Bajracharya, S., Ossher, J.: Sourcerer: An internet-scale software
repository. In: 1st ICSE Workshop on Search-Driven Development-

Users, Infrastructure, Tools and Evaluation (2009).

11. Exemplar: A Source Code Search Engine ForFinding Highly
Relevant Applications Collin McMillan, Member, IEEE, Mark

Grechanik, Member,IEEE, Denys Poshyvanyk, Member, IEEE,

Chen Fu, Member, IEEE, Qing Xie, Member, IEEE
12. Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and

Cristina V Lopes. How well do internet code search engines

supportopen source reuse strategies? TOSEM, 2009.
13. Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster.

Program understanding and the concept assigment problem.

Commun. ACM,37(5):72–82, 1994.
14. James Howison and Kevin Crowston. The perils and pitfalls of

mining Sourceforge. In MSR, 2004.
15. Charles W. Krueger. Software reuse. ACM Comput. Surv.,

24(2):131–183, 1992.

16. Mark Gabel and Zhendong Su. A study of the uniqueness of source
code. In Foundations of software engineering, FSE ’10, pages 147–

156,New York, NY, USA, 2010. ACM.

17. Mark Grechanik, Kevin M. Conroy, and Katharina Probst. Finding
relevant applications for prototyping. In MSR, page 12, 2007.

18. Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen. Sniff: A

search engine for java using free-form queries. In FASE, pages
385–400, 2009.

BIOGRAPHIES

Ms. Divya Kumari Tankala received

Master Degree in Computer Science

and Engineering form Jawaharlal Nehru

Technological University, Hyderabad

(JNTUH). Her research interest

includes Information and

Communication Technologies and

Software engineering. Presently she is working as an

Asst.Prof in CSE Department, Vignan Institute of

Technology and Science, Hyderabad

Mr. Vikas Boddu received Master

Degree in Bio-Informatics from

Jawaharlal Nehru Technological

University, Hyderabad (JNTUH). Hir

research interest includes cloud

computing and computer networks.

Presently she is working as an

Asst.Prof in CSE Department, GITAM University, Andhra

Pradesh.

